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Tendon Injury and Tendinopathy: 
Healing and Repair

BY PANKAJ SHARMA, MRCS, AND NICOLA MAFFULLI, MD, MS, PHD, FRCS(ORTH)

➤ Tendon disorders are frequent and are responsible for substantial morbidity both in sports and in the workplace.

➤ Tendinopathy, as opposed to tendinitis or tendinosis, is the best generic descriptive term for the clinical condi-
tions in and around tendons arising from overuse.

➤ Tendinopathy is a difficult problem requiring lengthy management, and patients often respond poorly to treatment.

➤ Preexisting degeneration has been implicated as a risk factor for acute tendon rupture.

➤ Several physical modalities have been developed to treat tendinopathy. There is limited and mixed high-level evi-
dence to support the, albeit common, clinical use of these modalities.

➤ Further research and scientific evaluation are required before biological solutions become realistic options.

Tendons connect muscle to bone and allow transmission of
forces generated by muscle to bone, resulting in joint move-
ment. Tendon injuries produce considerable morbidity, and
the disability that they cause may last for several months de-
spite what is considered appropriate management1. Chronic
problems caused by overuse of tendons probably account for
30% of all running-related injuries2, and the prevalence of el-
bow tendinopathy in tennis players can be as high as 40%3.
The basic cell biology of tendons is still not fully understood,
and the management of tendon injury poses a considerable
challenge for clinicians. This article describes the function and
structure of tendons, reviews the pathophysiology of tendon
injury and the phases of tendon healing, and reviews possible
strategies for optimizing tendon healing and repair.

Tendon Structure
Healthy tendons are brilliant white in color and have a fi-
broelastic texture. Tendons demonstrate marked variation in
form; they can be rounded cords, straplike bands, or flattened
ribbons4. Within the extracellular matrix network, tenoblasts
and tenocytes constitute about 90% to 95% of the cellular ele-
ments of tendons5. Tenoblasts are immature tendon cells. They
are spindle-shaped and have numerous cytoplasmic organelles,
reflecting their high metabolic activity5. As they mature, teno-
blasts become elongated and transform into tenocytes5. Teno-
cytes have a lower nucleus-to-cytoplasm ratio than tenoblasts,
with decreased metabolic activity5. The remaining 5% to 10% of
the cellular elements of tendons consists of chondrocytes at the
bone attachment and insertion sites, synovial cells of the tendon

sheath, and vascular cells, including capillary endothelial cells
and smooth muscle cells of arterioles. Tenocytes are active in
energy generation through the aerobic Krebs cycle, anaerobic
glycolysis, and the pentose phosphate shunt, and they synthe-
size collagen and all components of the extracellular matrix
network6-8. With increasing age, metabolic pathways shift from
aerobic to more anaerobic energy production9,10.

The oxygen consumption of tendons and ligaments is
7.5 times lower than that of skeletal muscles11. The low meta-
bolic rate and well-developed anaerobic energy-generation
capacity are essential to carry loads and maintain tension for
long periods, reducing the risk of ischemia and subsequent
necrosis. However, a low metabolic rate results in slow heal-
ing after injury12.

The dry mass of human tendons is approximately 30% of
the total tendon mass, with water accounting for the remaining
70%. Collagen type I accounts for 65% to 80% and elastin ac-
counts for approximately 2% of the dry mass of tendons6,13-15.
Tenocytes and tenoblasts lie between the collagen fibers along
the long axis of the tendon16.

Collagen is arranged in hierarchical levels of increasing
complexity, beginning with tropocollagen, a triple-helix poly-
peptide chain, which unites into fibrils; fibers (primary bun-
dles); fascicles (secondary bundles); tertiary bundles; and the
tendon itself (Fig. 1)17-19. Soluble tropocollagen molecules
form cross-links to create insoluble collagen molecules, which
aggregate to form collagen fibrils. A collagen fiber is the small-
est tendon unit that can be tested mechanically and is visible
under light microscopy. Although collagen fibers are mainly
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oriented longitudinally, fibers also run transversely and hori-
zontally, forming spirals and plaits20-22.

The ground substance of the extracellular matrix net-
work surrounding the collagen and the tenocytes is composed
of proteoglycans, glycosaminoglycans, glycoproteins, and sev-
eral other small molecules5. Proteoglycans are strongly hydro-
philic, enabling rapid diffusion of water-soluble molecules
and the migration of cells. Adhesive glycoproteins, such as
fibronectin and thrombospondin, participate in repair and
regeneration processes in tendon20,23,24. Tenascin-C, another
important component of the tendon extracellular matrix net-
work, is abundant in the tendon body and at the osteotendi-
nous and myotendinous junctions25,26. Tenascin-C contains a
number of repeating fibronectin type-III domains, and, fol-
lowing stress-induced unfolding of these domains, it also
functions as an elastic protein26,27. The expression of tenascin-
C is regulated by mechanical strain and is upregulated in
tendinopathy25,28,29. Tenascin-C may play a role in collagen fiber
alignment and orientation30.

The epitenon, a fine, loose connective-tissue sheath con-
taining the vascular, lymphatic, and nerve supply to the ten-
don, covers the whole tendon and extends deep within it
between the tertiary bundles as the endotenon. The endot-
enon is a thin reticular network of connective tissue investing
each tendon fiber31,32. Superficially, the epitenon is surrounded
by paratenon, a loose areolar connective tissue consisting of
type-I and type-III collagen fibrils, some elastic fibrils, and an
inner lining of synovial cells9. Synovial tendon sheaths are
found in areas subjected to increased mechanical stress, such
as tendons of the hands and feet, where efficient lubrication is
required. Synovial sheaths consist of an outer fibrotic sheath
and an inner synovial sheath, which consists of thin visceral
and parietal sheets18. The inner synovial sheath invests the ten-
don body and functions as an ultrafiltration membrane to

produce synovial fluid33. The fibrous sheath forms condensa-
tions, the pulleys, which function as fulcrums to aid tendon
function34.

At the myotendinous junction, tendinous collagen fibrils
are inserted into deep recesses formed by myocyte processes, al-
lowing the tension generated by intracellular contractile pro-
teins of muscle fibers to be transmitted to the collagen fibrils35-39.
This complex architecture reduces the tensile stress exerted on
the tendon during muscle contraction35. However, the myoten-
dinous junction still remains the weakest point of the muscle-
tendon unit35,39-42.

The osteotendinous junction is composed of four zones: a
dense tendon zone, fibrocartilage, mineralized fibrocartilage,
and bone43. The specialized structure of the osteotendinous
junction prevents collagen or fiber bending, fraying, shearing,
and failure44,45.

Blood Supply
Tendons receive their blood supply from three main sources:
the intrinsic systems at the myotendinous junction and osteo-
tendinous junction, and the extrinsic system through the
paratenon or the synovial sheath46,47. The ratio of blood supply
from the intrinsic systems to that from the extrinsic system
varies from tendon to tendon. For example, the central third
of the rabbit Achilles tendon receives 35% of its blood supply
from the extrinsic system48,49. At the myotendinous junction,
perimysial vessels from the muscle continue between the fasci-
cles of the tendon25. However, blood vessels originating from
the muscle are unlikely to extend beyond the proximal third of
the tendon46. The blood supply from the osteotendinous junc-
tion is sparse and is limited to the insertion zone of the ten-
don, although vessels from the extrinsic system communicate
with periosteal vessels at the osteotendinous junction5,46.

In tendons enveloped by sheaths to reduce friction,

Fig. 1

Anatomy of a normal tendon.
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branches from major vessels pass through the vincula (meso-
tenon) to reach the visceral sheet of the synovial sheath, where
they form a plexus18 that supplies the superficial part of the
tendon, while some vessels from the vincula penetrate the
epitenon. These penetrating vessels course in the endotenon
septa and form a connection between the peritendinous and
intratendinous vascular networks.

In the absence of a synovial sheath, the paratenon
provides the extrinsic component of the vasculature. Vessels
entering the paratenon course transversely and branch repeat-
edly to form a complex vascular network50. Arterial branches
from the paratenon penetrate the epitenon to course in the
endotenon septa, where an intratendinous vascular network
with abundant anastomoses is formed5,51.

Tendon vascularity is compromised at junctional zones
and sites of torsion, friction, or compression. In the Achilles
tendon, angiographic injection techniques have demonstrated
a zone of hypovascularity 2 to 7 cm proximal to the tendon
insertion46,52. However, laser Doppler flowmetry has demon-
strated substantially reduced blood flow near the Achilles ten-
don insertion, with an otherwise even blood flow throughout
the tendon53. A similar zone of hypovascularity is present on
the dorsal surface of the flexor digitorum profundus tendon
subjacent to the volar plate, within 1 cm of the tendon inser-
tion54. In general, tendon blood flow decreases with increasing
age and mechanical loading53.

Tendon Innervation
Tendon innervation originates from cutaneous, muscular, and
peritendinous nerve trunks. At the myotendinous junction,
nerve fibers cross and enter the endotenon septa. Nerve fibers

form rich plexuses in the paratenon, and branches penetrate the
epitenon. Most nerve fibers do not actually enter the main body
of the tendon but terminate as nerve endings on its surface.

Nerve endings of myelinated fibers function as special-
ized mechanoreceptors to detect changes in pressure or ten-
sion. These mechanoreceptors, the Golgi tendon organs, are
most numerous at the insertion of tendons into the muscle55,56.
Golgi tendon organs are essentially a thin delicate capsule of
connective tissue that encloses a group of branches of large
myelinated nerve fibers. These fibers terminate with a spray of
fiber endings between bundles of collagen fibers of the ten-
don57,58. Unmyelinated nerve endings act as nociceptors, and
they sense and transmit pain. Both sympathetic and parasym-
pathetic fibers are present in tendon59.

Biomechanics
Tendons transmit force from muscle to bone and act as a
buffer by absorbing external forces to limit muscle damage60.
Tendons exhibit high mechanical strength, good flexibility,
and an optimal level of elasticity to perform their unique
role16,61,62. Tendons are viscoelastic tissues that display stress re-
laxation and creep63,64.

The mechanical behavior of collagen depends on the
number and types of intramolecular and intermolecular
bonds65. A stress-strain curve helps to demonstrate the behav-
ior of tendon (Fig. 2). At rest, collagen fibers and fibrils display a
crimped configuration66. The initial concave portion of the
curve (toe region), where the tendon is strained up to 2%, rep-
resents flattening of the crimp pattern13,67,68. Beyond this point,
tendons deform in a linear fashion as a result of intramolecular
sliding of collagen triple helices, and the fibers become more

Fig. 2

Stress-strain curve demonstrating the basic physical properties of a tendon.





 TH E JO U R NA L OF BONE & JOINT SURGER Y ·  JBJS .ORG

VO LU M E 87-A ·  NUMB ER 1 ·  JA NU A R Y 2005
TENDON IN JU R Y A N D TENDINOPATHY : HEALING A N D REPAIR

parallel69,70. If the strain remains <4%, the tendon behaves in an
elastic fashion and returns to its original length when un-
loaded71. Microscopic failure occurs when the strain exceeds
4%. Beyond 8% to 10% strain, macroscopic failure occurs from
intrafibril damage by molecular slippage61,67,72. X-ray diffraction
studies have demonstrated that collagen fibril elongation ini-
tially occurs as a result of molecular elongation, but as stress in-
creases, the gap between molecules increases, eventually leading
to slippage of lateral adjoining molecules73. After this, complete
failure occurs rapidly, and the fibers recoil into a tangled bud at
the ruptured end60.

The tensile strength of tendons is related to thickness
and collagen content, and a tendon with an area of 1 cm2 is
capable of bearing 500 to 1000 kg31,74,75. During strenuous ac-
tivities such as jumping and weight-lifting, very high loads are
placed on tendons76. Forces of 9 kN, corresponding to 12.5
times body weight, have been recorded in the human Achilles
tendon during running77-79. Since these forces exceed the sin-
gle-load ultimate tensile strength of the tendon, the rate of
loading may also play an important role in tendon rupture67,79.
Tendons are at the highest risk for rupture if tension is applied
quickly and obliquely, and the highest forces are seen during
eccentric muscle contraction65,80-84.

Tendon Injury
Tendon injuries can be acute or chronic and are caused by in-
trinsic or extrinsic factors, either alone or in combination. In
acute trauma, extrinsic factors predominate.

Tendon Rupture
An acceleration-deceleration mechanism has been reported in
up to 90% of sports-related Achilles tendon ruptures85. Mal-
function of the normal protective inhibitory pathway of the
musculotendinous unit may result in injury86. The etiology of
tendon rupture remains unclear12. Degenerative tendinopathy
is the most common histological finding in spontaneous ten-
don ruptures. Arner et al. reported degenerative changes in all
of their seventy-four patients with an Achilles tendon rupture,
and they hypothesized that those changes were due to intrinsic
abnormalities that had been present before the rupture87. Kan-
nus and Jozsa found degenerative changes in 865 (97%) of 891
tendons that had spontaneously ruptured, whereas degenera-
tive changes were seen in 149 (33%) of 445 control tendons10.
Tendon degeneration may lead to reduced tensile strength and
a predisposition to rupture. Indeed, histological evaluation of
ruptured Achilles tendons has demonstrated greater degenera-
tion than was found in tendons that were chronically painful
as a result of an overuse injury88.

Tendinopathy
Overuse injuries generally have a multifactorial origin. Interac-
tion between intrinsic and extrinsic factors is common in
chronic tendon disorders12. It has been claimed that intrinsic
factors such as alignment and biomechanical faults play a caus-
ative role in two-thirds of Achilles tendon disorders in ath-
letes89,90. In particular, hyperpronation of the foot has been

linked with an increased prevalence of Achilles tendinopathy91,92.
Excessive loading of tendons during vigorous physical training
is regarded as the main pathological stimulus for degeneration93,
and there may be a greater risk of excessive loading inducing
tendinopathy in the presence of intrinsic risk factors. Tendons
respond to repetitive overload beyond the physiological thresh-
old with either inflammation of their sheath or degeneration of
their body, or both94. Different stresses induce different re-
sponses. Unless fatigue damage is actively repaired, tendons will
weaken and eventually rupture95. The repair mechanism is
probably mediated by resident tenocytes, which maintain a fine
balance between extracellular matrix network production and
degradation. Tendon damage may even occur from stresses
within the physiological limits, as frequent cumulative micro-
trauma may not allow enough time for repair93. Microtrauma
can also result from nonuniform stress within tendons, produc-
ing abnormal load concentrations and frictional forces between
the fibrils and causing localized fiber damage96.

The etiology of tendinopathy remains unclear, and many
causes have been theorized17,89. Ischemia occurs when a tendon
is under maximal tensile load. On relaxation, reperfusion oc-
curs, generating oxygen free radicals97,98; this may cause tendon
damage, resulting in tendinopathy98. Peroxiredoxin 5 is an anti-
oxidant enzyme that protects cells against damage from such
reactive oxygen species. Peroxiredoxin 5 is found in human
tenocytes. Its expression is increased in tendinopathy, a find-
ing that supports the view that oxidative stress may play a
role99. Hypoxia alone may also result in degeneration, as ten-
dons rely on oxidative energy metabolism to maintain cellular
ATP levels100. During vigorous exercise, localized hypoxia may
occur in tendons, with tenocyte death.

During locomotion, tendons store energy, 5% to 10% of
which is converted into heat101,102. In the equine superficial dig-
ital flexor tendon, temperatures of up to 45°C have been re-
corded during galloping103. Although short periods at 45°C are
unlikely to result in tenocyte death, repeated hyperthermic in-
sults and prolonged hyperthermia may compromise cell via-
bility and lead to tendon degeneration104,105.

Excessive tenocyte apoptosis, the physiological process
often referred to as “programmed cell death,” has been impli-
cated in rotator cuff tendinopathy106. Application of strain to
tenocytes produces stress-activated protein kinases, which in
turn trigger apoptosis107,108. Oxidative stress may play a role in
inducing apoptosis, but the precise details remain to be
elucidated109. There are more apoptotic cells in ruptured su-
praspinatus tendons than in normal subscapularis tendons110.
Tendinopathic quadriceps femoris tendons exhibited a rate of
spontaneous apoptosis that was 1.6 times greater than that of
normal tendons111.

In animal studies, local administration of cytokines and
inflammatory prostaglandins produced a histological picture of
tendinopathy112,113. Application of cyclic strain increases produc-
tion of prostaglandin E2 (PGE2) in human patellar tenocytes114,
and it increases interleukin-6 (IL-6) secretion115 and IL-1β gene
expression in human flexor tenocytes116. Human flexor tendon
cells treated with IL-1β produced increased mRNA for cycloox-
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ygenase-2, matrix metalloproteinase-1 (MMP-1), MMP-3, and
PGE2

117. IL-1β released on mechanical stretching of rabbit
Achilles tendons results in increased production of MMP-3
(stromelysin-1)118. Hence, prolonged mechanical stimuli induce
production of cytokines and inflammatory prostaglandins,
which may be mediators of tendinopathy.

Ciprofloxacin also induces IL-1β-mediated MMP-3 re-
lease, and use of fluoroquinolone is associated with tendon rup-
ture and tendinopathy119-121. Fluoroquinolones inhibit tenocyte
metabolism, reducing cell proliferation and collagen and matrix
synthesis, a mechanism that may induce tendinopathy122,123.

MMPs, a family of proteolytic enzymes124, are classified
according to their substrate, specificity, and primary structure.
They have the combined ability to degrade the components of
the extracellular matrix network and to facilitate tissue
remodeling125-127. Downregulation of MMP-3 mRNA has been
reported in Achilles tendinopathy128,129. Alfredson et al. found,
in addition to downregulation of MMP-3, upregulation of
MMP-2 (gelatinase A) and vascular endothelial growth factor
(VEGF) in Achilles tendinopathy compared with control
samples129. Decreased MMP-3 and MMP-2 activity, but in-
creased MMP-1 (collagenase-1) activity, has been reported in
ruptured supraspinatus tendons130. However, a rabbit model of
supraspinatus tears showed increased expression of MMP-2
and TIMP-1 (tissue inhibitor of metalloproteinase-1)131.

Failure to adapt to recurrent excessive loads may result in
release of cytokines by tenocytes, leading to further modula-
tion of cell activity132. An increase in cytokine levels in response
to repeated injury or mechanical strain may induce MMP re-
lease, with degradation of the extracellular matrix network and
eventual tendinopathy. Mechanical loading studies have varied
with regard to the strain protocol used, and direct comparison
of their results is often difficult. The amount and frequency of
application of strain may in fact determine the type and
amount of cytokines released. Although an imbalance in MMP
activity has been demonstrated in tendinopathic and ruptured
tendons, differences in expression of the various MMPs have
been reported125-131. A differential temporal sequence of MMP
expression may occur, and MMP expression may differ be-
tween tendinopathic and ruptured tendons.

Histological Changes in Tendinopathy
The term “tendinosis” has been in use for nearly three decades
to describe the pathological features of the extracellular matrix
network in tendinopathy133. Despite that, most clinicians still
use the term “tendinitis” or “tendonitis,” thus implying that the
fundamental problem is inflammatory. We advocate the use of
the term “tendinopathy” as a generic descriptor of the clinical
conditions in and around tendons arising from overuse, and we
suggest that the terms “tendinosis” and “tendinitis” be used
only after histopathological examination134.

Histological examination of tendinopathy shows disor-
dered, haphazard healing with an absence of inflammatory
cells, a poor healing response, noninflammatory intratendi-
nous collagen degeneration, fiber disorientation and thinning,
hypercellularity, scattered vascular ingrowth, and increased

interfibrillar glycosaminoglycans18,135-137. Frank inflammatory
lesions and granulation tissue are infrequent and are mostly
associated with tendon ruptures138.

Various types of degeneration may be seen in tendons,
but mucoid or lipoid degeneration is usually found in the
Achilles tendon18,139. Light microscopy of a tendon with mu-
coid degeneration reveals large mucoid patches and vacuoles
between fibers. In lipoid degeneration, abnormal intratendi-
nous accumulation of lipid occurs, with disruption of collagen
fiber structure18,140,141. In patellar tendinopathy, mucoid degen-
eration is commonly seen, although hyaline degeneration
rarely occurs142-146. In rotator cuff tendinopathy, mucoid degen-
eration occurs, but fibrocartilaginous metaplasia, often ac-
companied by calcium deposition, is also common147. Amyloid
deposition in supraspinatus tendons with degenerative tears
has also been reported148.

Tendinosis can be viewed as a failure of the cell matrix
to adapt to a variety of stresses as a result of an imbalance be-
tween matrix degeneration and synthesis93,132. Macroscopi-
cally, the affected portions of the tendon are seen to have lost
their normal glistening-white appearance and to have become
gray-brown and amorphous. Tendon thickening, which can
be diffuse, fusiform, or nodular, occurs149. Tendinosis is often
clinically silent, and its only manifestation may be a rupture;
however, it may also coexist with symptomatic paratendin-
opathy98,150-152. Mucoid degeneration, fibrosis, and vascular pro-
liferation with a slight inflammatory infiltrate have been
reported in paratendinopathy12,153,154. Edema and hyperemia of
the paratenon are seen clinically. A fibrinous exudate accumu-
lates within the tendon sheath, and crepitus may be felt on
clinical examination149.

In  samples from 397 ruptured Achilles tendons, Kannus
and Jozsa found no evidence of inflammation under light and
electron microscopy10. Arner et al. also found no neutrophilic
infiltration in Achilles tendons on the first day after rupture,
and they concluded that any inflammation seen at a later stage
occurred subsequent to the rupture87. In a recent study, im-
munohistochemical staining of neutrophils confirmed acute
inflammation in all of sixty ruptured Achilles tendons155. Col-
lagen degeneration and tenocyte necrosis may trigger an acute
inflammatory response, which further weakens the tendon,
predisposing it to rupture.

In summary, tendinopathy shows features of disordered
healing, and inflammation is not typically seen. Although de-
generative changes do not always lead to symptoms, preexist-
ing degeneration has been implicated as a risk factor for acute
tendon rupture10,87,88. The role played by inflammation in ten-
don rupture is less clear.

Pain in Tendinopathy
Classically, pain in tendinopathy was attributed to inflamma-
tion. However, chronically painful Achilles and patellar ten-
dons show no evidence of inflammation, and many tendons
with intratendinous lesions detected on magnetic resonance
imaging or ultrasound are not painful149. Pain may originate
from a combination of mechanical and biochemical factors149.
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Tendon degeneration with mechanical breakdown of collagen
could theoretically explain the pain, but clinical and surgical
observations have challenged this view149. Chemical irritants
and neurotransmitters may generate pain in tendinopathy,
and microdialysis sampling has revealed a twofold increase in
lactate levels in tendons with tendinopathy compared with
those in controls156. Patients with chronic Achilles tendinopa-
thy and patellar tendinopathy showed high concentrations of
the neurotransmitter glutamate, with no significant elevation
of the proinflammatory prostaglandin PGE2

157. However, the
levels of PGE2 were consistently higher in the tendinopathic
tendons than they were in controls, and it is possible that the
results lacked significance because of the small sample size of
the study.

Substance P functions as a neurotransmitter and neuro-
modulator, and it is found in small unmyelinated sensory
nerve fibers158. A network of sensory innervation is present in
tendons, and substance P has been found both in tendino-
pathic Achilles tendons and in medial and lateral epicondy-
lopathy159-162. Sensory nerves transmit nociceptive information
to the spinal cord, and increased levels of substance P correlate
with pain levels in rotator cuff disease162.

An opioid system has been demonstrated in the Achilles
tendons of rats163. Under normal conditions, there is probably
a balance between nociceptive and anti-nociceptive pep-
tides164,165, with alteration of this equilibrium in pathological
conditions164,165.

Tendon Healing
Studies of tendon healing predominantly have been per-
formed on transected animal tendons or ruptured human ten-
dons, and their relevance to healing of tendinopathic human
tendons remains unclear.

Tendon healing occurs in three overlapping phases. In
the initial, inflammatory phase, erythrocytes and inflamma-
tory cells, particularly neutrophils, enter the site of injury. In
the first twenty-four hours, monocytes and macrophages pre-
dominate and phagocytosis of necrotic materials occurs. Vaso-
active and chemotactic factors are released with increased
vascular permeability, initiation of angiogenesis, stimulation
of tenocyte proliferation, and recruitment of more inflamma-
tory cells166. Tenocytes gradually migrate to the wound, and
type-III collagen synthesis is initiated167.

After a few days, the proliferative phase begins. Synthe-
sis of type-III collagen peaks during this stage and lasts for a
few weeks. Water content and glycosaminoglycan concentra-
tions remain high during this stage167.

After approximately six weeks, the remodeling phase
commences, with decreased cellularity and decreased collagen
and glycosaminoglycan synthesis. The remodeling phase can be
divided into a consolidation stage and a maturation stage168. The
consolidation stage begins at about six weeks and continues for
up to ten weeks. In this period, the repair tissue changes from
cellular to fibrous. Tenocyte metabolism remains high during
this period, and tenocytes and collagen fibers become aligned in
the direction of stress169. A higher proportion of type-I collagen

is synthesized during this stage170. After ten weeks, the matura-
tion stage occurs, with gradual change of the fibrous tissue to
scar-like tendon tissue over the course of one year169,171. During
the latter half of this stage, tenocyte metabolism and tendon
vascularity decline172.

Tendon healing can occur intrinsically, by proliferation of
epitenon and endotenon tenocytes, or extrinsically, by invasion
of cells from the surrounding sheath and synovium173-175.
Epitenon tenoblasts initiate the repair process through prolifer-
ation and migration176-179. Healing of severed tendons can be
achieved by cells from the epitenon alone, without reliance on
adhesions for vascularity or cellular support180,181. Internal teno-
cytes contribute to the intrinsic repair process and secrete larger
and more mature collagen fibers than do epitenon cells182. De-
spite this, fibroblasts in the epitenon and tenocytes synthesize
collagen during repair, and different cells probably produce dif-
ferent collagen types at different time-points. Initially, collagen
is produced by epitenon cells, with endotenon cells synthesizing
collagen later183-187. The relative contribution of each cell type
may be influenced by the type of trauma sustained, the anatom-
ical location, the presence of a synovial sheath, and the amount
of stress induced by motion after repair has taken place188.

Tenocyte function may vary depending on the region of
origin. Cells from the tendon sheath produce less collagen and
glycosaminoglycans than do epitenon and endotenon cells.
However, fibroblasts from the flexor tendon sheath proliferate
more rapidly189,190. The variation in phenotypic expression of
tenocytes has not been extensively investigated, and this infor-
mation may prove useful for optimizing repair strategies.

Intrinsic healing results in better biomechanics and fewer
complications; in particular, a normal gliding mechanism
within the tendon sheath is preserved191. In extrinsic healing,
scar tissue results in adhesion formation, which disrupts tendon
gliding192. Different healing patterns may predominate in partic-
ular locations; for example, extrinsic healing tends to prevail in
torn rotator cuffs193.

MMPs are important regulators of extracellular matrix
network remodeling, and their levels are altered during ten-
don healing126-128. In a rat flexor tendon laceration model, the
expression of MMP-9 and MMP-13 (collagenase-3) peaked
between the seventh and fourteenth days after the surgery.
MMP-2, MMP-3, and MMP-14 (MT1-MMP) levels increased
after the surgery and remained high until the twenty-eighth
day194. These findings suggest that MMP-9 and MMP-13 par-
ticipate only in collagen degradation, whereas MMP-2, MMP-
3, and MMP-14 participate both in collagen degradation and
in collagen remodeling. Wounding and inflammation also
provoke release of growth factors and cytokines from platelets,
polymorphonuclear leukocytes, macrophages, and other in-
flammatory cells195-200. These growth factors induce neovascu-
larization and chemotaxis of fibroblasts and tenocytes and
stimulate fibroblast and tenocyte proliferation as well as syn-
thesis of collagen201,202.

Nitric oxide is a short-lived free radical with many bio-
logical functions: it is bactericidal, it can induce apoptosis in
inflammatory cells, and it causes angiogenesis and vasodila-
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tion203-205. Nitric oxide may play a role in several aspects of
tendon healing. Nitric oxide synthase is responsible for synthe-
sizing nitric oxide from L-arginine. Levels of nitric oxide syn-
thase peaked after seven days and returned to baseline fourteen
days after tenotomies of rat Achilles tendons206. In that study,
inhibition of nitric oxide synthase reduced healing, resulted in
a decreased cross-sectional area, and reduced failure load206.
The authors did not identify the specific isoforms of nitric ox-
ide synthase. More recently, the same research group demon-
strated a temporal expression of the three isoforms of nitric
oxide synthase207. The inducible isoform peaks on the fourth
day, the endothelial isoform peaks on the seventh day, and the
neuronal isoform peaks on the twenty-first day207.

Interestingly, in a rat Achilles tendon rupture model,
nerve fiber formation peaked between two and six weeks after
the rupture, in concert with peak levels of the neuronal iso-
form of nitric oxide synthase208. These nerve fibers presumably
deliver neuropeptides that act as chemical messengers and re-
gulators, and they may play an important role in tendon heal-
ing. Substance P and calcitonin gene-related peptide (CGRP)
are proinflammatory and cause vasodilation and protein ex-
travasation209-211. In addition, substance P enhances cellular re-
lease of prostaglandins, histamines, and cytokines212,213. Levels
of substance P and CGRP peak during the proliferative phase,
suggesting a possible role during that phase.

Limitations of Healing
Adhesion formation after intrasynovial tendon injury poses a
major clinical problem214. Disruption of the synovial sheath at
the time of the injury or surgery allows granulation tissue and
tenocytes from surrounding tissue to invade the repair site.
Exogenous cells predominate over endogenous tenocytes, al-
lowing the surrounding tissue to attach to the repair site and
resulting in adhesion formation.

Despite remodeling, the biochemical and mechanical
properties of healed tendon tissue never match those of in-
tact tendon. In a study of transected sheep Achilles tendons
that had spontaneously healed, the rupture force was only
56.7% of normal at twelve months215. One possible reason for
this is the absence of mechanical loading during the period
of immobilization.

Current Strategies for Tendon Healing
Physical Modalities

Many physical modalities are used in the management of ten-
don disorders. However, although these modalities are in rou-
tine clinical use, only a few controlled clinical trials have been
performed. Most of the evidence is still pre-clinical and, at
times, controversial.

Extracorporeal shock wave therapy applied to rabbit
Achilles tendons, at a rate of 500 impulses of 14 kV in twenty
minutes, resulted in neovascularization and an increase in the
angiogenesis-related markers such as nitric oxide synthase and
VEGF216. Extracorporeal shock wave therapy promoted heal-
ing of experimental Achilles tendinopathy in rats217. The au-
thors proposed that the healing improved because of an

increase in growth factor levels, as they had noted elevated lev-
els of transforming growth factor-β1 (TGF-β1) in the early
stage and persistently elevated levels of IGF-1217. In another
study, seventy-four patients with chronic noncalcific rotator
cuff tendinopathy were randomized to receive either active ex-
tracorporeal shock wave therapy (1500 pulses of 0.12 mJ/
mm2) or sham treatment monthly for three months218. The
mean duration of symptoms was 23.3 months in both groups.
All patients were assessed for pain in the shoulder, including
night pain measured with a visual analogue score, and a dis-
ability index was calculated before each treatment and at one
and three months after the completion of the treatment. There
were no significant differences between the two groups before
treatment. Both groups showed marked and sustained im-
provements from two months onward, but the moderate
doses of extracorporeal shock wave therapy provided no
added benefit compared with the sham treatment.

In a double-blind, randomized, placebo-controlled trial
of 144 patients with calcific tendinopathy of the rotator cuff,
patients received high-energy extracorporeal shock wave
therapy, low-energy extracorporeal shock wave therapy, or a
placebo (sham treatment)219. The two groups treated with ex-
tracorporeal shock wave therapy received the same cumulative
energy dose. All patients received two treatment sessions ap-
proximately two weeks apart, followed by physical therapy.
Both the high-energy and the low-energy extracorporeal
shock wave therapy resulted in an improvement in the mean
Constant and Murley score at six months compared with the
score after the sham treatment. Also, the patients who had re-
ceived the high-energy extracorporeal shock wave therapy had
a higher six-month Constant and Murley score than did the
patients who had received the low-energy extracorporeal
shock wave therapy. Compared with the placebo, both the
high-energy and the low-energy extracorporeal shock wave
therapy appeared to provide a beneficial effect in terms of bet-
ter shoulder function, less self-rated pain, and diminished size
of calcifications. Also, the high-energy extracorporeal shock
wave therapy appeared to be superior to the low-energy ther-
apy. However, caution should be exercised when using extra-
corporeal shock wave therapy, as dose-dependent tendon
damage, including fibrinoid necrosis, fibrosis, and inflamma-
tion, has been reported in rabbits220.

Pulsed magnetic fields with a frequency of 17 Hz im-
proved collagen fiber alignment in a rat Achilles tendinopathy
model221. In another study, tenotomized rat Achilles tendons
were sutured and then treated with low-intensity galvanic cur-
rent for fifteen minutes a day for two weeks222. Biomechanical
analysis revealed an increased force to breakage in the anode-
stimulated group compared with controls and a cathode-stim-
ulated group.

Direct current applied to rabbit tendons in vitro in-
creased type-I-collagen production and decreased adhesion
formation223. In a randomized trial, lacerated rabbit flexor ten-
dons were repaired and then received pulsed electromagnetic
field stimulation for six hours a day, starting six days after the
surgery and continuing until twenty-one days after the
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surgery224. At four weeks, no difference in adhesion formation
was noted.

The effects of laser therapy on tendon healing have also
been studied. Laser phototherapy increased collagen produc-
tion in rabbits subjected to tenotomy and surgical repair225.
In a placebo-controlled, double-blind, prospective study of
twenty-five patients with a total of forty-one digital flexor ten-
don repairs, laser therapy reduced postoperative edema but
provided no improvement with regard to pain relief, grip
strength, or functional results compared with controls226.

Radiofrequency coblation is a new application of bipo-
lar radiofrequency energy used for volumetric tissue removal.
Under appropriate conditions, a small vapor layer forms on
the active electrode of the device. The electrical field of the en-
ergized electrode causes electrical breakdown of the vapor,
producing a highly reactive plasma that is able to break down
most of the bonds found in soft-tissue molecules. Radiofre-
quency coblation stimulates an angiogenic response in normal
rabbit Achilles tendons227. Rapid pain relief was reported in a
preliminary uncontrolled prospective, nonrandomized, single-
center, single-surgeon study of twenty patients with tendinop-
athy of the Achilles tendon, patellar tendon, and common
extensor origin227. Six months after the procedure, magnetic
resonance imaging showed complete or near complete resolu-
tion of the tendinopathy in ten of the twenty patients.

Cytokines and Growth Factors

Increased levels of TGF-β2 have been reported in tendino-
pathic human Achilles tendons and in rabbit flexor tendons
after injury228,229. TGF-β results in scar formation and fibrosis,
and TGF-β1 expression is increased in patients with hyper-
trophic scarring and keloids following a burn230,231. The re-
sponse to cytokines may be site-specific, and insulin-like
growth factor-I (IGF-I) induces a higher rate of collagen syn-
thesis in rabbit flexor tendons than it does in rabbit Achilles
tendons232. The use of cytokines and growth factors to enhance
tendon healing remains largely experimental and has been re-
stricted to in vitro studies and animal models233-249. The clinical
use of growth factors for the treatment of tendon problems
has not yet been reported, to our knowledge.

Gene Therapy

Gene therapy delivers genetic material (DNA) to cells, permit-
ting modification of cellular function, by means of viral or non-
viral vectors or direct gene transfer250,251. Gene therapy enables
the delivery of individual proteins to specific tissues and cells252.

Several animal studies have been done to investigate the
feasibility of gene transfer to tendons. For example, hemaggluti-
nating virus of Japan (HVJ)-liposome constructs were used to
deliver β-galactosidase to rat patellar tendons253. In vivo and ex
vivo gene transfer techniques have been used as well. With these
methods, sustained gene expression seems to last for about six
weeks, possibly long enough for clinical applications254,255. Ex
vivo gene transduction is possibly more efficient, but the tech-
niques must be optimized.

Gene therapy can also alter the healing environment of

tendons in animal models of tendon repair. Adenoviral trans-
duction of focal adhesion kinase (FAK) into partially lacer-
ated chicken flexor tendons resulted in an expected increase
in adhesion formation and a twofold increase in the work re-
quired for flexion compared with the results in control
groups256. These differences were significant (p = 0.001).
While tendon healing was not improved in this study, the re-
sults did demonstrate that the healing environment and con-
ditions could be manipulated.

Bone morphogenetic protein-12 (BMP-12) is the human
analogue of murine GDF-7257. BMP-12 increases the expression
of procollagen type-I and III genes in human patellar tenocytes,
and it is found at sites of tendon remodeling258. BMP-12 in-
creased synthesis of type-I collagen by 30% in chicken flexor
tenocytes, and application of tenocytes transfected with the
BMP-12 gene to a chicken flexor tendon laceration model re-
sulted in a twofold increase in tensile strength and load to fail-
ure at four weeks259.

Transfer of genes to tendons is feasible, and, as the healing
environment can be manipulated for up to eight to ten weeks226,
this may be long enough to be clinically relevant. While the
above studies were conducted in tendon transection models,
delivery of substances such as platelet-derived growth factor-B
(PDGF-B), BMP-12, and decorin may improve healing of
tendinopathy257-267; additional research in this area is required.

Tissue Engineering with Mesenchymal Stem Cells

Mesenchymal stem cells are capable of undergoing differentia-
tion into a variety of specialized mesenchymal tissues, including
bone, tendon, cartilage, muscle, ligament, fat, and marrow
stroma (Fig. 3)268. In adults, mesenchymal stem cells are preva-
lent in bone marrow, but they are also found in muscle, fat, and
skin and around blood vessels269. The differentiation of mesen-
chymal stem cells along a particular phenotypic pathway may
be controlled by a master regulatory gene, a concept formulated
after the discovery of MyoD, a muscle transcription factor capa-
ble of inducing expression of a bank of muscle-specific genes270.
However, MyoD may not be the only transcription factor re-
sponsible for myogenic differentiation; Myf5, myogenin, and
MRF4 may also play a role271. Transcription factors that regulate
adipogenic and osteogenic differentiation have also been identi-
fied, but no transcription factors regulating tenocyte differenti-
ation have yet been identified272-275.

Mesenchymal stem cells can be applied directly to the
site of injury or can be delivered on a suitable carrier matrix,
which functions as a scaffold while tissue repair takes place. In
ex vivo, de novo tissue engineering with use of mesenchymal
stem cells, whole body tissues are constructed in the labora-
tory and are subsequently implanted into patients. Tissue-
engineered tendons could be used to bridge areas of tendon
loss or to replace severely degenerated regions276-279.

At present, tissue engineering is an emerging field, and
many issues, such as ideal scaffold materials, optimal cell-
seeding density, and optimal culture conditions, need to be es-
tablished before it becomes a real option in the management
of tendon disorders. Effective vascularization and innervation





 TH E JO U R NA L OF BONE & JOINT SURGER Y ·  JBJS .ORG

VO LU M E 87-A ·  NUMB ER 1 ·  JA NU A R Y 2005
TENDON IN JU R Y A N D TENDINOPATHY : HEALING A N D REPAIR

of implanted tissue-engineered constructs must take place for
the constructs to be viable. Vascularization allows survival of
the construct. Innervation is required for proprioception and
to maintain reflexes, mediated by Golgi tendon organs, to pro-
tect tendons from excessive forces280,281.

Prevention of Adhesions 

The most important factor implicated in adhesion formation is
trauma282. Tenocytes and tenoblasts are key cells in tendon
healing. The actin isoform α-smooth muscle actin has been
identified in tendons and ligaments283,284. Tenocytes that ex-
press α-smooth muscle actin are known as myofibroblasts.
There are three essential morphological elements that define
myofibroblasts: stress fibers (actin microfilaments), well-devel-
oped cell-stroma attachment sites (fibronexus), and intercellu-
lar gap junctions285. The fibronexus is presumed to transfer
tensile forces to the extracellular matrix network286. Myofibro-
blasts are thought to play a role in extracellular matrix network
homeostasis in tendons and ligaments, and they may well be re-
sponsible for the formation of tendon adhesions287.

Many attempts have been made to reduce adhesion for-
mation by using materials acting as mechanical barriers such as
polyethylene or silicone or by using pharmacological agents
such as indomethacin and ibuprofen, but no simple method is
widely used288-291. Hyaluronate is found in synovial fluid around
tendon sheaths292. Its use decreased adhesion formation in

repaired rabbit flexor tendons293,294 but resulted in no signifi-
cant differences in adhesion formation in a rat Achilles tendon
model295. The absence of a synovial membrane around the
Achilles tendon may explain this difference. A single dose of hy-
aluronate, at a concentration of 10 mL/mg, had no effect on
rabbit tenocyte proliferation or matrix synthesis296. Therefore, it
is unclear whether hyaluronate has any effect on myofibroblast
function or just acts as a mechanical barrier. Results may vary
with different doses of hyaluronate.

5-fluorouracil, an antimetabolite with anti-inflammatory
properties, inhibits fibroblast proliferation, with a greater effect
on synovial fibroblasts than on endotenon fibroblasts296,297. Lac-
erated chicken flexor tendons were repaired and were exposed
to various doses of 5-fluorouracil for five minutes298. A dose of
25 mg/mL effectively preserved tendon gliding, and, at three
weeks after the surgery, there was no significant difference in
excursion, maximal load, or work of flexion between the re-
paired tendons and normal controls. Use of 50 mg/mL of 5-
fluorouracil produced inferior results, suggesting that there is a
therapeutic threshold beyond which 5-fluorouracil may be det-
rimental to tendon healing.

Despite many efforts, adhesion formation after tendon
trauma remains a clinical problem, with no ideal method of
prevention. With advances in the understanding of the mech-
anisms involved in adhesion formation, it may be possible to
formulate improved strategies of prevention.

Fig. 3

Schematic representation of mesenchymal stem cell differentiation.
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Mobilization and Mechanical Loading

In animal experiments, training has improved the tensile
strength, elastic stiffness, weight, and cross-sectional area of
tendons299,300. These effects can be explained by an increase in
collagen and extracellular matrix network synthesis by teno-
cytes300. There are little data on the effect of exercise on human
tendons, although intensively trained athletes are reported to
have thicker Achilles tendons than control subjects301. Most of
our current knowledge is therefore based on the results of ani-
mal studies. However, care must be taken when interpreting
animal studies, as the results in untrained animals cannot be
directly compared with those in trained animals. Also, con-
fined animals are likely to have reduced connective-tissue mass
and tendon tensile strength, and physical training may merely
return these parameters to normal302.

Prolonged immobilization following musculoskeletal
injury may have detrimental effects. Collagen fascicles from
stress-shielded rabbit patellar tendons displayed lower tensile
strength and strain at failure than did control samples303. Im-
mobilization reduces the water and proteoglycan content of
tendons and increases the number of reducible collagen cross-
links304,305. Immobilization results in tendon atrophy, but, as a
result of the low metabolic rate and vascularity, these changes
occur slowly301.

After the inflammatory phase of healing, controlled
stretching is likely to increase collagen synthesis and improve
fiber alignment, resulting in higher tensile strength306. Col-
lagen that remains unstressed during the proliferative and re-
modeling phases remains haphazard in organization and is
weaker than stressed collagen307. Experimental studies have
demonstrated the beneficial effects of motion and mechanical
loading on tenocyte function. Repetitive motion increases
DNA content and protein synthesis in human tenocytes308.
Even fifteen minutes of cyclic biaxial mechanical strain ap-
plied to human tenocytes results in cellular proliferation309.
Application of a cyclic load to wounded avian flexor tendons
results in migration of epitenon cells into the wound310. In rab-
bit patellar tendons, application of a 4% strain provides pro-

tection against degradation by bacterial collagenase311.
Clinical studies have shown the benefit of early mobili-

zation following tendon repair, and several postoperative mo-
bilization protocols have been advocated312-316. The precise
mechanism by which cells respond to load remains to be eluci-
dated. However, cells must respond to mechanical and chemical
signals in a coordinated fashion. For example, intercellular
communication by means of gap junctions is necessary to
mount mitogenic and matrigenic responses in ex vivo models317.

Overview
Tendon injuries produce substantial morbidity, and at present
there are only a limited number of scientifically proven man-
agement modalities. A better understanding of tendon func-
tion and healing will allow specific treatment strategies to be
developed. Many interesting techniques are being pioneered.
The optimization strategies discussed in this article are cur-
rently at an early stage of development. While these emerging
technologies may develop into clinical treatment options,
their full impact on tendon healing needs to be critically eval-
uated in a scientific fashion.
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